[拼音]:zhongxin jixian dingli [外文]:central limit theorem 概率论中讨论随机变量序列部分和的分布渐近于正态分布的一类定理。1920年,G.波伊亚称这类定理为中心极限定理。它是概率论中最重要的一类定理,有着广泛的实际背景。在自然界与生产中,一些现象受到许多相互独立的随机因素的影响,如果每个因素所产生的影响都很微小时,总的影响可以看作是服从正态分布的。中心极限定理就是从数学上证明了这一现象。 独立随机变量的中心极限定理历史上最初的中心极限定理是讨论 n重伯努利试验(见二项分布)中,事件A出现的次数μn渐近于正态分布的问题。若记事件A出现的概率为p(A)=p,不出现的概率为q=1-p,1716年前后,A.棣莫弗对p=1/2作了讨论,随后,P.-S.拉普拉斯推广到一般情形,得到:当-∞<α<b<+∞,有 ![]() 式中 ![]() 是标准正态分布函数,这就是棣莫弗-拉普拉斯定理。为讨论一般形式的中心极限定理,Α.М.李亚普诺夫改进了∏.Л.切比雪夫创立的矩法,给出了独立随机变量序列{xn}服从中心极限定理的李亚普诺夫条件,其结论称为李亚普诺夫定理:记数学期望 随着特征函数(见概率分布)的引入,中心极限定理的研究得到了很快的发展。20世纪20年代,Y.W.林德伯格和P.莱维证明了林德伯格-莱维定理:对于独立同分布的随机变量序列{xn},当Exk=α及varxk=σ2有限时,部分和Sn的标准化
式中Fk(x)=p(xk≤x)。这个结果使长期以来作为概率论中心议题之一的关于独立随机变量序列的中心极限定理得到根本解决。前述诸结果都是它的推论。 此后中心极限定理的研究基本上围绕几个方面进行:一是减弱对随机变量独立性的要求,考虑具有某种相依性的随机变量;一是讨论向标准正态密度函数收敛的问题;再就是估计向正态分布收敛的速度及有关问题。 局部极限定理向正态密度函数收敛的问题虽然在概率论的早期工作中就出现了,但是一般性结果直至20世纪中期才得到。在棣莫弗-拉普拉斯定理形成的过程中,首先解决的是,在 n重伯努利试验中,事件 A出现的次数μn等于k的概率 pn(k)=p(μn=k)渐近于正态密度的问题,即所谓棣莫弗-拉普拉斯局部极限定理:在任给的有限区间[с,d]中,对于满足 这一问题至今仍是许多概率论学者所注意的课题,其中讨论得较多且获得实际应用的有m 相依随机变量序列、强平稳随机变量序列、鞅、马尔可夫过程及其他泛函,以及各种类型的统计量序列。对于这些序列在附加一定条件时,中心极限定理也成立。这便使得许多实际问题中的随机变量或随机过程可视为正态的。 收敛速度的估计为了讨论向正态分布收敛的速度,20世纪40年代,先后由A.C.贝里及C.G.埃森给出了下述著名的埃森不等式:对于独立随机变量序列{xn},记其标准化部分和 对于独立同分布的随机变量序列{xn},若 ![]() 如果x的上界M随着n的增大而单调趋于无穷,则与上述结果类似的定理称为大偏差定理。这类结果在诸如重对数律(见大数律)的研究中是很重要的。确切地说,设Mn随n单调上升,且 ![]() ![]() 则称对 Mn大偏差定理成立。1938年,H.克拉默在渐近展开的基础上证明,若存在正常数H,使当|t|<H 时, 早在20世纪30年代,就开始注意到如下普遍极限问题:考察在每一行内独立的随机变量阵列 ![]() 式中参数у 是实数,G(u)是满足G(-∞)=0的有界非降函数,称为 ƒ(t)的莱维-辛钦谱函数。ƒ(t)的另一表示是 ![]() 此公式称为莱维表示。 若对随机变量xnk不加任何限制,则任一分布都可作为某个阵列的行和Sn的极限分布。按照物理学的启示,在30年代就提出了无穷小条件的概念,这一条件要求Sn的每一个别加项xnk,当n很大时,所起的作用都很微小:即对任何 (1) (2) 由普遍极限定理,可列出向正态分布、泊松分布及退化分布收敛的最一般条件。例如,满足无穷小条件的独立阵列的行和向正态分布 N(α,σ2)收敛的充分必要条件是: (1)对任给 ![]() (2)存在ε>0,使 ![]() (3)存在ε>0,使 ![]() 这是中心极限定理的最一般结果。林德伯格-费勒定理等都可由它推出。 在讨论普遍极限定理的同时,辛钦于1936年考虑了限于独立随机变量序列{xn}的“普遍极限问题”,就是讨论对适当选取的常数Bn>0与An, 当随机变量序列{xn}限于独立且同分布时,
格涅坚科和W.多布林还各自独立地给出了收敛于某稳定律的充分必要条件。 极限定理是概率论的重要内容,也是数理统计的基石之一,其理论成果也比较完美。长期以来,对于极限定理的研究所形成的概率论分析方法,影响着概率论的发展。同时新的极限理论问题也在实际中不断产生。 |